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Abstract
In many volume segmentation and visualization tasks, the ability to correctly identify the boundary surface of each
volumetric feature of interest in the data is desirable. This surface can be used in subsequent quantitative study
of the segmented features. In this paper, we present an automatic approach to generate accurate representations
of a feature of interest from volume segmentation. Our method first locatesa set of points which tightly define the
boundary of the volumetric feature. This set of points can then be used to construct a boundary surface mesh. We
also describe how to construct an anti-aliased volume representation of the segmented feature from this point set
to enable high-quality volume rendering of the feature. These three representations – point set, boundary surface
mesh, and anti-aliased volume segment – have a wide variety of applications.

1. Introduction

Volume segmentation is an important task in applications
that rely on 3D imaging methods for nondestructive testing
and evaluation. However, due to the limitations of a typical
imaging process such as sampling resolution [YK01], the
boundary between two materials is a partial volume which
consists of voxels that receive contributions from multiple
materials. This situation presents great challenges to the vol-
ume segmentation task, and is more severe if the two materi-
als have low-contrast intensity values. A feasible solution is
manual segmentation based on domain knowledge, which is
commonly done for 2D cases, but for 3D the task is too te-
dious. What is desired is a robust segmentation method that
can succinctly identify and construct the boundary of volu-
metric features with minimum user intervention.

One way to approach this goal is to obtain segmentation
results with voxel-level accuracy and automatically generate
an accurate boundary from them. In this paper, we present
such a new boundary construction method for volume seg-
mentation. Figure1 illustrates a volume segmentation and
visualization pipeline. The step of feature extraction may be
accomplished with any existing segmentation technique by
voxel labeling. The step of boundary finding generates a set
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of new points defining the boundary surface that intersects or
are close to the boundary voxels. The step of voxel identifi-
cation may be done with region growing [HMMW03], clus-
tering [SBC00], or graph cuts [BJ01]. In this work, region
growing is used. The surface identification process is done
based on the boundary model suggested in [KD98]. The
resulting boundary points are then used in an anti-aliasing
step to generate a more precise volumetric definition of the
feature. The boundary points can also be used to construct
a tight boundary surface using a method which is similar
to [HDD∗92] but performs better in the presence of noise.
To visualize the boundary surface, we can render either the
boundary points directly [PZvBG00] or a constructed sur-
face.

Our method generates three accurate boundary represen-
tations including a point set, an anti-aliased volume, and a
geometric surface. These representations are derived from
one mathematical boundary model and therefore share the
same accuracy. Based on application demand, the user can
select one of them for further analysis and processing. Thus,
our method serves many more applications.

2. Related Work

Accuracy is a key issue in volume segmentation because it
determines the reliability of subsequent tasks such as vol-
ume measurements, medical diagnosis, and non-destructive
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Figure 1: The volume segmentation and visualization
pipeline.

testing [PXP98]. Current segmentation techniques can be
roughly divided into two categories based on their accuracy.
First, binary segmentation approaches like region growing
and thresholding output a collection of voxels to represent
the features of interest [GP00]. Second, more sophisticated
methods such as deformable models [KWT88] and fuzzy
segmentation [Dun74] give results with subvoxel accuracy.

Material boundaries are generally detected by thresh-
olding gradient magnitudes or finding the zero-crossing of
the second-order derivatives of the data [TMHG03]. These
methods are fast and do not need priori information about
the image. However, the former often forms unclosed bound-
aries while the latter is sensitive to noise. Edge linking al-
gorithms [Loh98] that make closed boundaries and a tech-
nique called Laplacian of Gaussian (LoG) [MH79] have
been proposed to handle these cases, respectively. In par-
ticular, Goshtasby and Turner [GT95] combine these two
methods followed by a curve-fitting algorithm to extract the
closed boundary of ventricular chambers.

Deformable boundary finding in volumetric data uses a
deformable surface model to fit the boundary by balancing
the influence of internal forces. These forces are determined
by the model and the external forces obtained from the image
data [XP00]. A priori knowledge in features can be incorpo-
rated into the models to achieve better results [MT00]. One
popular deformable model is known as snakes [KWT88],
which are planar deformable contours. Other deformable
models use a geometric representation [MBL∗91], finite
element methods [MT95], and level sets [SZSD00]. De-
formable boundary finding inherits the constraints from the
model representations [HXP03]. In addition, deformable
models that adapt their geometric changes to topology have
a number of parameters which need a lot of user inven-
tion [LT04].

Surface reconstruction from volumetric data

sets or point clouds have been extensively re-
searched [NBM05] [WOK05] [ACK01]. The existing
approaches can be roughly divided into two categories:
model-based and nonmodel-based methods. More detailed
survey can be found in [MM97].

3. Automatic Boundary Finding

As shown in Figure1, volume segmentation begins with
a feature extraction step which finds those voxels com-
posing the feature of interest. In our system, this step is
done with region growing through an interactive user inter-
face [HMMW03]. The following step of boundary finding
derives a set of points defining the boundary of the feature.
We have developed a robust, automatic method for this task.
The resulting points tightly mark the feature boundary with
sufficient density. This boundary-finding method consists of
the following steps:

1. Dilate the pre-segmented volume to also include layers of
voxels external to the boundary region, which gives some
information about the materials adjacent to the extracted
feature.

2. Cast sampling lines from voxels inside the boundary
through the boundary region into the adjacent material.
Sample along those lines to construct a boundary func-
tion f for each of the materials adjacent to the feature.

3. Locate the boundary point on each sampling line using
the correspondingf .

In the rest of this section, we use two synthetic data sets to
illustrate the boundary-finding method and results. The first
synthetic volume contains one sphere surrounded by one ma-
terial, and the other has a cylinder adjacent to four different
materials. Gaussian noise was added to both data sets. Fig-
ure2 shows these two data sets.

3.1. The Boundary Model

Kindlmann and Durkin [KD98] proposed a boundary model,
and subsequently evaluated the model parameters from a his-
togram volume. Our method adopts the boundary model to
represent the properties of the boundaries between a feature
and its adjacent materials. Figure3 shows the intensity func-
tion and its first and second derivatives defined on a sampling
line passing through the boundary region perpendicularly.
The equation of the function is:

v = f (x) = vmin+(vmax−vmin)
1+er f( x

σ
√

2
)

2
(1)

wherex is a position on the line andv is the intensity value at
x; vmin andvmax are the data values of two materials beside
the boundary;er f is an error function, andσ is related to the
boundary thickness. The first derivative of the function is:

f ′(x) =
vmax−vmin

σ
√

2π
e−

x2

2σ2 (2)
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Figure 2: Two synthetic noisy data sets with the size of1283.
The top row shows the slice and shape of a sphere sur-
rounded by one material; the bottom row gives the slice and
shape of a cylinder adjacent to four materials.
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Figure 3: The intensity function f and its 1st derivative f′

and 2nd derivative f′′ along a line perpendicularly going
through the boundary region. Left: a line samples the bound-
ary region; Right: the functions f , f′, and f′′ along the line.

and the second derivative is:

f ′′(x) = −x(vmax−vmin)

σ3
√

2π
e−

x2

2σ2 (3)

From the extrema of values off ′ and f ′′, σ used to deter-
mine the boundary thickness can be calculated as follows:

σ =
f ′(0)√

e f′′(−σ)
= − f ′(0)√

e f′′(σ)
(4)

The extrema off ′ and f ′′ can be computed from the his-
togram volume indexed by the data values and their first and
second derivatives.

3.2. Boundary Sampling

It is important to generate a sufficient number of sampling
lines passing through the boundary region in order to ob-
tain enough boundary points for representing the real bound-
ary. Figure4 illustrates the sampling scheme in 2D. P and Q

P
ql

Q

pl

Q'
P'

1

2

3

1 2 3 b (boundary)

Figure 4: The sampling scheme: two sampling lines lp and lq
defined by two adjacent pre-segmented voxel P and Q have
found P′ and Q′ on the boundary b; the number of new sam-
pling lines through points on P′Q′ is determined by evenly
partitioning the half circumference of P′Q′ into segments
shorter than one voxel size.

are two adjacent pre-segmented boundary voxels. Two sam-
pling lines lp and lq, defined by P and Q and their gradi-
ent directions, are generated to find the pointsP′ andQ′ on
the boundaryb. It is possible thatP′ andQ′ are far enough
to miss some characteristics ofb. However, since P and Q
are adjacent and close tob, we can assume that the bound-
ary segment betweenP′ andQ′ is simple. This assumption
means that the boundary segment is convex and falls in the
area enclosed by the lineP′Q′ and the half circle connecting
P′ andQ′.

The scheme first divides the half circumference to a num-
ber of segments which have an equal length less than one
cell size. This step determines the number of partitions in
the next step – then the line segmentP′Q′ is also evenly
partitioned to the same number of parts. Finally the parti-
tioning points onP′Q′ and their gradient directions are used
to generate new sampling lines in the same way to find more
boundary points.

In the 3D case, a quadrilateral is formed with four bound-
ary points found with four adjacent boundary voxels. Each
edge of the quadrilateral is partitioned using the above
method and a sampling mesh is generated by connecting
the partitioning points of opposite edges. Accurate bound-
ary points are found by traversing all boundary voxels.

Based on assumption, we can conclude that the maximum
distance from each obtained boundary point to its nearest
neighbor is no more than one voxel size. For example, there
are 116057 boundary points found on the sphere boundary,
and the maximum distance from each point to the nearest
neighbor is 0.7563.
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Figure 5: The histogram constructed to detect the number of
adjacent materials for the cylinder, as shown in Figure2.

3.3. Boundary Function Construction

The pre-segmented volume contains voxels close to the ac-
tual boundary. Using morphology, a dilated version of the
volume is generated to include additional layers of vox-
els such that information about the materials adjacent to
the corresponding feature is included. This dilated volume
is used to find the number of adjacent materials and thus
construct the boundary functions needed. The sampling ap-
proach described in the previous section is used to construct
the boundary functions. The density of the sampling lines is
more than that of the original volumetric mesh, which help
capture small adjacent materials.

The next step is to construct a 1D histogram of the sam-
pled values along these lines. This histogram is used to de-
termine the number of neighboring materials and their val-
ues. Figure5 shows such a histogram for the cylinder data
set in which we see four different materials surrounding the
cylinder.

The data values sampled on a line are used to deter-
mine which material boundary the line has sampled. This
is accomplished by comparing the sampled data values near
the boundary region to the average values of the adjacent
material. The boundary function for each adjacent material
is constructed with the sampling lines passing through the
boundary regions to sample the data values, as well as com-
pute the first and second derivatives of the samples. These

three values( f , f
′
, f

′′
) are then used to create a histogram

volume which is used to calculate theσ using Equation4.
Theσ of the sphere boundary computed from its histogram
volume is 1.24099.

3.4. Boundary Points Finding

The boundary functions derived are used to find accurate
boundary points within the dilated volume from sampling
lines generated with the same scheme described in Sec-
tion 3.2. Note that due to noise in the data, a sampling line
is mostly not perpendicular to the actual boundary surface at
the point it goes through. Fortunately, our method can handle
this issue effectively based on our experiments and results.
Figure6(a) illustrates a 2D case wherel is the sampling line
passing through the real boundaryb of M and F at pointB,

0 p'
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'- ' -

b

B

B
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xp xl

l

Figure 6: Finding the boundary point B with a sampling line
l. (a) l goes through the boundary region between M and F
and intersects with the real boundary b at point B; the data
values, first derivatives and second derivatives at xp and xl
are the same when b is flat; (b) the curves of the first deriva-
tives for p and l with the origin at B. p is perpendicular to
b and therefore is represented with the boundary model. We
simplify the finding process by fitting l′ with p′ derived from
the histogram volume.

and p is a line perpendicular tob at B. Suppose the adja-
cent material M and the feature F have the average voxel
valuevM andvF , respectively, andvM < vF , then according
to Equation2 the first derivative ofp is as follows:

p′(x) =
vF −vM

σ
√

2π
e−

(x)2

2σ2 (5)

where x is zero atB.

Assume the vicinity ofB is a straight segment ofb and
the angle betweenp and l is θ ∈ [0,

π
2). The first derivative

value of a pointxl at l is equal to the first derivative of the
point xp on p under the condition thatxp is a perpendicular
mapping ofxl on p. Then we can obtainl ′ using Equation5
as follows:

l ′(x) = p′(xcosθ) =
vF −vM

σ
√

2π
e−

(xcosθ)2

2σ2 ,θ ∈ [0,
π
2
)

Let σ′ = σ
cosθ ,

l ′(x) =
vF −vM

σ
√

2π
e−

x2

2σ′2 (6)

Sincecosθ ≤ 1, we haveσ′ ≥ σ. Figure6(b) plotsp′ andl ′

where we can see that the maximum value ofp′ andl ′ is the
same butl ′ is wider thanp′, or the same ifθ = 0. Because
we need to findB at l whose origin is the sampling point
used to generatel , we modify Equation6 to:

l ′(x) =
vF −vM

σ
√

2π
e−

(x−xB)2

2σ′2 (7)

wherexB is the relative position ofB at l .

Given a sampling line, we can use Equation7 to fit the
first derivative values on the line to find the boundary point
with nonlinear least square fitting. LetK = vF−vM

σ
√

2π
and K is

also different for each line. So strictly speaking, there are
three variablesσ′, xB, and K to be solved, which is very
expensive. Fortunately,xB can be found by only using the
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boundary model without calculatingσ′ andK, and the er-
ror is small enough to be neglected. That is, instead of using
Equation7, we can modify Equation5 to 8 and use it in the
fitting operations:

p′(x) =
vF −vM

σ
√

2π
e−

(x−xB)2

2σ2 (8)

There are 116057 boundary points found on the sphere
boundary using our method. We calculate the radius (the
distance between the boundary points and the center) using
Equation8. The radiuses are between 32.936 and 33.4351,
the average is 33.19, and the standard deviation is 0.056. The
numbers indicate that the points are accurate compared to the
truth numbers which show that the average is 33.186 and the
standard deviation is 0.059. Our simplified approach only
uses 25.2 seconds, comparing to the method using Equa-
tion 7 that takes 278 seconds. In addition, the maximum dis-
tance from each point to the nearest neighbor is 0.7563.

4. Anti-Aliased Volumetric Boundary Construction

Binary segmentation techniques introduce aliasing artifacts
at the boundaries of extracted volume. Lakare and Kauf-
man [LK03] proposed an algorithm calledintensity flipping
to reconstruct the fuzzy volume around the boundary to re-
move the artifacts and generate better visualization. Their
approach modifies the intensity of voxels on three voxel lay-
ers including the boundary layer and its two adjacent layers,
so that the flipped values gradually change from the feature
value to air. The equation of intensity flipping is:

δ′p = δAIR+
δ2−δp

δ2−δ1
(δ1−δAIR) (9)

whereδp andδ′p are the original and new values of voxelp,
respectively;δ1 andδ2 are the average voxel values of two
regions inside and outside three layers aroundp; δAIR is the
value of air which is mostly zero.

The intensity flipping algorithm works well for low-noise
data sets. But it has problems when being applied to noisy
data sets. In the latter case, supposeδ2 > δ1 andδAIR = 0.
Whenδp > δ2 due to noise,δ′p will be less than zero. On
the other hand, whenδp < δ1, δ′p will become bigger than
δ1. Both of these wrong flippings exacerbate the aliasing ar-
tifacts.

We propose a new method to derive an anti-aliased vol-
ume that is almost free from noise while preserving the
boundary positions. First, the boundary points are grouped
according to the boundary function they use. Second, for
each boundary point, the values of its surrounding voxels are
modified with the model function. Finally, the fuzzy region
is generated with intensity flipping, which avoids sudden in-
tensity changes from the adjacent materials to air.

Figure7 illustrates the approach with a 2D case. In this
example,B is one of the boundary points onb. We calculate

A
R

B

rbk
abk

b (boundary)

Figure 7: Anti-aliased volume extraction: a fuzzy voxel
around the boundary point B is calculated by first mapping
its center A to R on krb, evaluating R’s intensity value with
the boundary model, and then computing the final value with
intensity mapping.

the boundary region ofB with a circle that is centered atB
and has the radius equal to the boundary thickness defined
with the σ of the model. All cells intersected with the cir-
cle are collected as the boundary region. For example, there
are nine cells inB’s boundary region, as shown in Figure7.
For each cell, we compute its new value by mapping its cen-
tral point on the linep that is perpendicular tob at B. For
instance, the new voxel value of A is evaluated using Equa-
tion 1 as:

v(A) =

{

vF +(vM −vF )
1+er f( |AB|cosθ

σ
√

2
)

2 θ ∈ [0,
π
2)

vF+vM
2 θ = π

2
(10)

where|AB| is the distance between A and B.

The final fuzzy value of A is calculated fromv(A) by in-
tensity flipping. Since the new value does not contain noise,
wrong intensity flippings never happen. For voxels that are
processed by more than one boundary point, the average
value will be used.

This approach overcomes the disadvantage of intensity
flipping. It is almost free from the noise effects. Figure8
compares the pre-segmented sphere, anti-aliased sphere by
intensity flipping and the sphere with our method. We can
see that our approach generates a smoother result. In addi-
tion, on the slice by intensity flipping, some pink regions
appear near the boundary because of wrong flippings.

5. Boundary Surface Construction

We have developed an algorithm to construct a boundary sur-
face from the boundary point set. The approach is to create
a distance field out of the point set such that the zero set is
the boundary surface. The generated triangular mesh using
the marching cubes is an approximation to the zero set. This
construction process is similar to what is used in the anti-
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Figure 8: Anti-aliased sphere extraction. The top row shows
the pre-segmented sphere; the second row gives the anti-
aliased sphere with intensity flipping; the third row illus-
trates the result with our approach.

aliased boundary volume construction. The difference is that
it does not use a specific boundary model and does not con-
sider surrounding materials. We evaluate the voxel values in
the volume portion with a linear function instead of bound-
ary model functions because the marching cubes use linear
interpolation. Using the example in Figure7, the voxel value
of A is calculated with the following equation:

v(A) = viso+ |AB|coshθ (11)

where |AB| is the distance between A and B, andviso is
the designated value of boundary points. For each bound-
ary point, the eight voxel values of the cell it falls in are
computed. For voxels that are processed by more than one
boundary point, the average of all values is calculated. The
boundary surface is obtained by applying marching cubes
only to the portion of volume with isovalueviso.

We use this method to construct the sphere surface. The
average radius of the triangle vertices is 33.197 and the ra-
dius standard deviation is 0.067, which is very close to the
values of boundary points (33.19 and 0.059).

Our method is similar to [HDD∗92]. The main difference
lies on the construction of volume portion. Their approach
goes through each voxel in the portion and evaluates its value
with a signed distance function. This function is defined with
the distance between the voxel and the tangent plane of the
surface at the point closest to it. Our method traverses each
boundary point and computes its contribution to the voxels
of the cell it intersects. Our volume construction method thus
has two advantages: it alleviates noise affects by averaging
the contributions from neighboring points, and it provides a
close approximation of the boundary surface by considering

Figure 9: Visualizations of the head and ganglion data set.
Left: the whole volumes; Right: the pre-segmented features.

more neighboring points for each voxel. However, their ap-
proach can be more efficient if the number of voxels is less
than the number of points, although it needs a specific data
structure to organize the points to facilitate a nearest neigh-
bor search.

6. Results

We have tested our methods with two real data sets includ-
ing an MRI scan of a human head and a confocal micro-
scopic imaging of ganglion. Figure9 shows the visualization
of their whole volumes and the pre-segmented features from
the data sets.

The head data set has the size of 256 x 256 x 128 and con-
tains a tumor which is the feature of interest. Our method
finds 28982 boundary points. The top row of Figure10
shows these points and the surface constructed from them.
The bottom row shows a semi-transparent view of the anti-
aliased tumor and a slice of the tumor where the constructed
boundaries of dead cells inside the tumor are also visible.

The ganglion data set has the resolution of 110 x 1024
x 1024. This data set contains a tube-like feature with a lot
of bifurcations. The top-left image in Figure11 is the con-
structed anti-aliased volume of the ganglion. The other three
images show the close-up views of the circled part in the top-
left image. The top-right image is the pre-segmented vol-
ume, the bottom-left image is the boundary points, and the
last one is the anti-aliased volume. We can see that the im-
portant neuraxon shape is well-caught by our approach.

Since the density of boundary points is ensured with our
method, the boundary points can be used to directly depict
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Figure 10: The boundary of the tumor. The top row shows
the boundary points and the geometric surfaces constructed
from them; the bottom row gives the anti-aliased transparent
tumor and its slice where the internal dead cells’ boundaries
are also visible.

Figure 11: The top-right shows the constructed anti-aliased
volume of the ganglion. The other three images give a zoom-
in part of the pre-segmented ganglion, the boundary points,
and the anti-aliased volume, respectively. This part is circled
in the top left image.

the feature of interest for quick previewing using point-based
rendering.

One problem we must address is that some sampling lines
might not find boundary points, e.g. those for incomplete
surface. In this case, we trust the pre-segmented segmenta-

Figure 12: Left: the surfaces of the ganglion generated with
our method; Right: the surfaces created with a level set seg-
mentation using itk. Our mehtod preserves better neuraxon
shapes.

Table 1: Performance results

Feature Points Time (sec.)
Modeling Finding Antialiasing

sphere 116057 5.547 25.181 3.949
tumor 28982 1.429 7.38 1.061
ganglion 1315477 43.274 204.60 45.404

tion and output the center of the boundary voxel. In addition,
we use a filtering procedure to get rid of those points isolated
from the boundary point set which might appear due to im-
age noise [MT00].

Figure 12 compares the surfaces of the ganglion gener-
ated with our method and level-set segmentation approach
in the itk toolkit (http://www.itk.org/). We can see that our
method constructs the neuraxon shapes better than the level-
set segmentation method because the latter tends to smooth
surfaces which also flattens the neuraxon shapes.

Table6 shows the performance of our approach. We can
see that boundary finding operation takes dominant time.
These numbers are obtained using a Dell PC with a 3.2GHz
Pentium 4 CPU and 2GB memory.

7. Conclusion

This work has advanced the state of the art in volume seg-
mentation in the following ways: 1) the development of an
effective boundary finding algorithm by fitting sampled val-
ues based on a boundary model 2) proposing a simplification
method to speed up the fitting while preserving the accuracy
3) developing a novel anti-aliased volume construction ap-
proach 4) a fully automatic approach to generate three accu-
rate representations of volume segmentation results.

For future work, it would be helpful to extend the bound-
ary model to address the issue of joint boundaries of more
than two materials. Since the boundary point finding calcula-
tions for each sampling line are independent, programmable
graphics hardware can be used to accelerate the boundary-
finding procedure.
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